ledsw1.c - Demonstrates using a FSM approach for a LED/switch IO problem.¶
A program that uses a finite state machine approach for implementing switch/LED input/output.
#include <stdio.h>
#include "pic24_all.h"
LED1 configuration and access¶
#define CONFIG_LED1() CONFIG_RB14_AS_DIG_OUTPUT()
#define LED1 (_LATB14) //led1 state
Pushbutton configuration and access¶
void config_pb() {
CONFIG_RB13_AS_DIG_INPUT();
ENABLE_RB13_PULLUP();
Give the pullup some time to take effect.
DELAY_US(1);
}
#if (HARDWARE_PLATFORM == EMBEDDED_C1)
# define PB_PRESSED() (_RB7 == 0)
# define PB_RELEASED() (_RB7 == 1)
#else
# define PB_PRESSED() (_RB13 == 0)
# define PB_RELEASED() (_RB13 == 1)
#endif
Switch configuration and access¶
void config_sw() {
CONFIG_RB12_AS_DIG_INPUT();
ENABLE_RB12_PULLUP();
Give the pullup some time to take effect.
DELAY_US(1);
}
#define SW (_RB12)
State machine¶
First, define the states, along with a human-readable version.
typedef enum {
STATE_RELEASED1,
STATE_PRESSED1,
STATE_RELEASED2,
STATE_PRESSED2,
STATE_RELEASED3_BLINK,
STATE_PRESSED3,
} state_t;
const char* apsz_state_names[] = {
"STATE_RELEASED1 - LED is off",
"STATE_PRESSED1",
"STATE_RELEASED2 - LED is on",
"STATE_PRESSED2 - SW2 on goes to blink else go to RELEASED1",
"STATE_RELEASED3_BLINK - LED blinks 5x, waiting for PB press",
"STATE_PRESSED3 - LED is on",
};
Provide a convenient function to print out the state.
void print_state(state_t e_state) {
Force an initial print of the state
static state_t e_last_state = 0xFFFF;
Only print if the state changes.
if (e_state != e_last_state) {
e_last_state = e_state;
Verify that the state has a string representation before printing it.
ASSERT(e_state <= N_ELEMENTS(apsz_state_names));
outString(apsz_state_names[e_state]);
outChar('\n');
}
}
This function defines the state machine.
void update_state(void) {
static state_t e_state = STATE_RELEASED1;
The number of times the LED was toggled in the blink state
static uint16_t u16_led_toggles;
switch (e_state) {
case STATE_RELEASED1:
LED1 = 0;
if (PB_PRESSED()) {
e_state = STATE_PRESSED1;
}
break;
case STATE_PRESSED1:
if (PB_RELEASED()) {
e_state = STATE_RELEASED2;
}
break;
case STATE_RELEASED2:
LED1 = 1;
if (PB_PRESSED()) {
e_state = STATE_PRESSED2;
}
break;
case STATE_PRESSED2:
if (PB_RELEASED() && SW) {
e_state = STATE_RELEASED3_BLINK;
Zero the toggled count when entering the blink state.
u16_led_toggles = 0;
}
if (PB_RELEASED() && !SW) {
e_state = STATE_RELEASED1;
}
break;
case STATE_RELEASED3_BLINK:
Toggle the LED.
LED1 = !LED1;
u16_led_toggles++;
printf("toggles = %d\n", u16_led_toggles);
Delay to make LED blinks visible
DELAY_MS(250);
if (u16_led_toggles >= 10) {
e_state = STATE_RELEASED1;
}
if (PB_PRESSED()) {
e_state = STATE_PRESSED3;
}
break;
case STATE_PRESSED3:
LED1 = 1;
if (PB_RELEASED()) {
e_state = STATE_RELEASED1;
}
break;
default:
ASSERT(0);
}
print_state(e_state);
}
int main(void) {
Configure the hardware.
configBasic(HELLO_MSG);
config_pb();
config_sw();
CONFIG_LED1();
Initialize the state machine to its starting state.
LED1 = 0;
while (1) {
update_state();
Debounce the switch by waiting for bounces to die out.
DELAY_MS(DEBOUNCE_DLY);
Blink the heartbeat LED to confirm that the program is running.
doHeartbeat();
}
}