compect_csv.py - Group all processors with identical mappings together¶
From https://gist.github.com/samuraisam/901117¶
import datetime, time, functools, operator, types
default_fudge = datetime.timedelta(seconds=0, microseconds=0, days=0)
def deep_eq(_v1, _v2, datetime_fudge=default_fudge, _assert=False):
Tests for deep equality between two python data structures recursing into sub-structures if necessary. Works with all python types including iterators and generators. This function was dreampt up to test API responses but could be used for anything. Be careful. With deeply nested structures you may blow the stack.
- Options:
- datetime_fudge => this is a datetime.timedelta object which, when
- comparing dates, will accept values that differ by the number of seconds specified
- _assert => passing yes for this will raise an assertion error
- when values do not match, instead of returning false (very useful in combination with pdb)
Doctests included:
>>> x1, y1 = ({'a': 'b'}, {'a': 'b'})
>>> deep_eq(x1, y1)
True
>>> x2, y2 = ({'a': 'b'}, {'b': 'a'})
>>> deep_eq(x2, y2)
False
>>> x3, y3 = ({'a': {'b': 'c'}}, {'a': {'b': 'c'}})
>>> deep_eq(x3, y3)
True
>>> x4, y4 = ({'c': 't', 'a': {'b': 'c'}}, {'a': {'b': 'n'}, 'c': 't'})
>>> deep_eq(x4, y4)
False
>>> x5, y5 = ({'a': [1,2,3]}, {'a': [1,2,3]})
>>> deep_eq(x5, y5)
True
>>> x6, y6 = ({'a': [1,'b',8]}, {'a': [2,'b',8]})
>>> deep_eq(x6, y6)
False
>>> x7, y7 = ('a', 'a')
>>> deep_eq(x7, y7)
True
>>> x8, y8 = (['p','n',['asdf']], ['p','n',['asdf']])
>>> deep_eq(x8, y8)
True
>>> x9, y9 = (['p','n',['asdf',['omg']]], ['p', 'n', ['asdf',['nowai']]])
>>> deep_eq(x9, y9)
False
>>> x10, y10 = (1, 2)
>>> deep_eq(x10, y10)
False
>>> deep_eq((str(p) for p in xrange(10)), (str(p) for p in xrange(10)))
True
>>> str(deep_eq(range(4), range(4)))
'True'
>>> deep_eq(xrange(100), xrange(100))
True
>>> deep_eq(xrange(2), xrange(5))
False
>>> import datetime
>>> from datetime import datetime as dt
>>> d1, d2 = (dt.now(), dt.now() + datetime.timedelta(seconds=4))
>>> deep_eq(d1, d2)
False
>>> deep_eq(d1, d2, datetime_fudge=datetime.timedelta(seconds=5))
True
_deep_eq = functools.partial(deep_eq, datetime_fudge=datetime_fudge,
_assert=_assert)
def _check_assert(R, a, b, reason=''):
if _assert and not R:
assert 0, "an assertion has failed in deep_eq (%s) %s != %s" % (
reason, str(a), str(b))
return R
def _deep_dict_eq(d1, d2):
k1, k2 = (sorted(d1.keys()), sorted(d2.keys()))
if k1 != k2: # keys should be exactly equal
return _check_assert(False, k1, k2, "keys")
return _check_assert(operator.eq(sum(_deep_eq(d1[k], d2[k])
for k in k1),
len(k1)), d1, d2, "dictionaries")
def _deep_iter_eq(l1, l2):
if len(l1) != len(l2):
return _check_assert(False, l1, l2, "lengths")
return _check_assert(operator.eq(sum(_deep_eq(v1, v2)
for v1, v2 in zip(l1, l2)),
len(l1)), l1, l2, "iterables")
def op(a, b):
_op = operator.eq
if type(a) == datetime.datetime and type(b) == datetime.datetime:
s = datetime_fudge.seconds
t1, t2 = (time.mktime(a.timetuple()), time.mktime(b.timetuple()))
l = t1 - t2
l = -l if l > 0 else l
return _check_assert((-s if s > 0 else s) <= l, a, b, "dates")
return _check_assert(_op(a, b), a, b, "values")
c1, c2 = (_v1, _v2)
guard against strings because they are iterable and their elements yield iterables infinitely. I N C E P T I O N
for t in types.StringTypes:
if isinstance(_v1, t):
break
else:
if isinstance(_v1, types.DictType):
op = _deep_dict_eq
else:
try:
c1, c2 = (list(iter(_v1)), list(iter(_v2)))
except TypeError:
c1, c2 = _v1, _v2
else:
op = _deep_iter_eq
return op(c1, c2)
Code for this program¶
import csv
Enumerate all ports on a PIC24 processor, returning the result as a list.
def enumeratePic24Ports():
port_letters = [chr(i) for i in range(ord('A'), ord('K') + 1)]
The PIC series doesn’t have port I.
port_letters.remove('I')
return [i + str(j) for i in port_letters
for j in range(16)]
This routine builds pic24_ports_tables.h from a template. To do so:
- Open the output file and write out the header.
- Load in the CSV file containing pin information:
- Load three rows; they should be labeled xxx RPy, xxx ANn, and xxx CNm, where xxx is the processor.
- For each Rxy value:
- For F/H devices: look at the corresponding RPy, ANn, and CNm. If any are non-empty, write a table entry.
- For E devices: Write a #define for RPy or ANn if either are non-empty.
- Write out the footer.
def genTablesFromTemplate(csvFileName, destFileName):
Read in the CSV containing device information.
processors = { }
with open(csvFileName, "rb") as csvFile:
csv_dict_reader = csv.DictReader(csvFile).__iter__()
Walk through the file
while True:
Read three rows
try:
RPy = csv_dict_reader.next()
ANn = csv_dict_reader.next()
CNm = csv_dict_reader.next()
except StopIteration:
break
Get processor information and remove it (to avoid breaking the comparisons)
processor_name = RPy['Device port / pin'][:-4]
del RPy['Device port / pin']
del ANn['Device port / pin']
del CNm['Device port / pin']
Look for a duplicate
processor_value = (RPy, ANn, CNm)
found = False
for processor in processors:
if deep_eq(processors[processor], processor_value):
#print("%s duplicates %s." % (processor, processor_name))
found = True
processors[processor + ' ' + processor_name] = processor_value
del processors[processor]
if not found:
processors[processor_name] = processor_value
Open the output file.
#print(processors)
with open(destFileName, "wb") as outFile:
portlist = enumeratePic24Ports()
portlist.insert(0, 'Device port / pin')
csv_dict_writer = csv.DictWriter(outFile, portlist)
csv_dict_writer.writeheader()
for processor in sorted(processors.keys()):
RPy, ANn, CNm = processors[processor]
Remove any duplicates and write out processor names in sorted order.
processor = ' '.join(sorted(set(processor.split(' '))))
RPy['Device port / pin'] = processor + ' RPy'
ANn['Device port / pin'] = processor + ' ANn'
CNm['Device port / pin'] = processor + ' CNm'
csv_dict_writer.writerow(RPy)
csv_dict_writer.writerow(ANn)
csv_dict_writer.writerow(CNm)
if __name__ == '__main__':
genTablesFromTemplate('pic24_devices.csv' , 'pic24_devices_combined.csv')