www.reesemicro.com has more documentation, and the source code.

P1C24 Bully Bootloader Documentation

This is some minimal documentation on the PIC24 Bully bootloader for the PIC24H/F families. This
bootloader runs under Windows, a screenshot is below:

a-) PIC24 Bully Bootloader o[BSl

Main

Send Sendé'n Logging Enabled Enable Corfig Bits Praming

£

reset.c, buit on Oct 8 2008 at 05:42:35

Reset cause: MCLR assertion.

Device 1D = GeDDDOOF1D (PIC24H)32GP202), revision eDDD0300Z (A3)
Fast RC Osc with PLL

The reset count is (b2

1" enable watchdog timer

2" enter sleep mode

¥ enter idle mode

4" enable watchdog timer and enter sleep mode
'y doze = divide by 2

"6’ doze = divide by 128

T execute reset instruction

Chaoice:

COM4 - 57600 + |¥]| OpenCom MCLR#

HexFile | C:repos‘eced728\runk\PIC24'codechap8ireset hex

Program unknown MCLR# and Prgm

Started... -
Reading settings from: C:\Users‘reese’AppData’.Local’BullyBootloader'bootloaderProps bd

m

Settings loaded

Loading Device File: C:\Users‘reese’\Documents’pic24_code_examplesbin‘devices bd
Device File loaded -

This bootloader was developed from C and assembly code originally distributed by Microchip (see the
enclosed AN1094 application note. | have tested the bootloader on the p24FJ64GA002, p24HJGP202,
and p24HJ32GP202 targets. The bootloader window application is a .NET application and the supplied
executable has been tested with WinXp, Vista, and Vista64. The supplied executable has been reported to
be incompatible with WinXP64; but recompiling from the source may work (untested, the source files are
supplied in the archive).

After unpacking, you will have the following directories (assuming that you got this from the complete
code archive at www.reesemicro.com)

www.reesemicro.com has more documentation, and the source code.

e bootloader/24h_24f target/ - Source and MPLAB project for the 24H/F bootloader firmware
code to be loaded on the target processor. You will probably have to modify this source to map
the UART TX/RX pins to your desired target, as well change to your desired starting baudrate,
clock configuration. The current code uses RB10 for RX, RB11 for TX, and the internal oscillator
@ 40 MHZ FCY (PIC24H). If you compile to a new target, please be aware that you have to
provide a customized linker file for the bootloader so that it starts at location 0x400, and not the
default of 0x200. Some linker files for the bootloader are in this directory.

e bootloader/winbootldr/ - Source for windows bootloader application (Visual Studio 2005)
o hex/ - Some bootloader hex firmware files for some targets built from the 24h_24f target/ source.

o lkr/ - these are some sample linker files for difference processors that are used when building
your application to be compatible with the bootloader. Look at the comments inside the linkder
files as well as the AN1094 application to see the changes from the standard linker files. Be
careful when modifying linker files for the PIC24F family, you must change both the code origin
and length fields (see the sample PIC24F linker file provided and the comments).

e bin/ - Contains a winbootldr.exe file that is the Windows bootloader application. To install copy
this .exe and the devices.txt file to some target directory. The devices.txt file must have an entry
for your target processor; the comments at the top of this file indicate the format of each record. If
you processor is not currently listed, simply use a text editor to add it.

Installation of the Windows bootloader application

Copy the bin/winbootldr.exe and bin/devices.txt to a target directory and try executing winbootldr.exe. If
it does not run a couple of problems may be:

e Thisisa.NET application, so try installing the latest .NET runtime from Microsoft (try this first).

e You may need to unzip and install the vcrdistr_x86.zip which are some runtime DLLs that come
with Microsoft Visual Studio 2005.

.NET Requirements

You need at least .NET 2.0.XXX or above runtime framework installed. You can download this by
searching for “.NET framework” at www.microsoft.com/downloads . If you do not have at the .NET
runtime installed, then you may get this error message:

winbootldr.exe - Application Error ﬂ

@ The application failed ko initialize properly (0xc00001 350, Click on OF ko terminate the application,

http://www.microsoft.com/downloads

www.reesemicro.com has more documentation, and the source code.

Using the bootloader

This assumes you have a PIC24H/F target programmed with the bootloader firmware, and connected to
your PC via a serial port. If you have the RTS# line the USB-to-Serial cable connected to MCLR#, then
the RTS# checkbox pulls MCLR# low when checked, and MCLR# when unchecked.

In the bootloader application:

1.

Choose the appropriate COM part and baud rate (the default baudrate in the bootloader firmware
is 57600, the bootloader firmware does not autobaud). Click on the port checkbox to open the
port.

Use the "HexFile" button to browse to a hex file for download. The Hex file must be have been
compiled using a modified linker file such as those found in Ikr/. Our default test program is the
chap8/reset.mcp project. The project assumes a PIC24HJ32GP202 processor and uses the linker
file Ikr/p24HJ32GP202_bootldr.gld file.

Downloading a program via Power cycle or MCR#: Cycle power or assert MCLR# to your
target PIC24H/F; when power is applied or reset is released, you have about 2 seconds to press
the "Program” button in the Bootloader window. If the bootloader is able to establish a
connection, you will see your hex file downloaded to the target device.

Downloading a program via “MCLR# and Prgrm"* button: If you have the RTS# or DTR#
line of the USB-to-Serial cable connected to MCLR#, then press this button to program. The
bootloader will pulse the MCLR# input via RTS# or DTR# (both are pulsed), and then download
the program.

The upper part of the bootloader application window shows what is happening on the serial port,
you can use the 'Send' button to send data in the type-in field to your application via the serial
port (the 'Send&\n' sends the data with a new line)

If the bootloader does not work

If the bootloader hangs after programming the first block, be sure that you have compiled the
bootloader firmware so that it starts at 0x400 and not 0x200 (if it starts at 0x200, it will erase
itself).

If the bootloader complains that the device is unrecognized, add your target device to the
'devices.txt' file.

If the bootloader does not connect all, this could be a multitude of problems on the target side -
your clock is not configured correctly, the baud rate is wrong, the TX/RX pins are configured
incorrectly. To test this, just connect a dumb terminal program to the bootloader, and modify the
firmware to put out a 'hello’ message to see if your serial port is working correctly.

www.reesemicro.com has more documentation, and the source code.

The Bootloader Firmware and Persistent Data

The bootloader's firmware stack pointer is initialized around OXOE50 the last time | checked. This means
that if your application has persistent data above that point, it may (will) get stepped on. The bootloader's
static data buffer that takes up the space before this is persistent, so any of the application’s persistent data
in this space will be safe. If the bootloader loads a program, then it sets the POR bit to simulate a power-
on reset for the new program; this way if your program checks the POR bit to initialize persistent data you
will get correct behavior.

The Bootloader and Configuration Bits

Configuration bits on PIC24H/P1C24F devices determine things like initial clock source selection,
watchdog timer timeout, etc. The file 24h_24f target/pic24_configbits.c file sets the configuration bits
for the bootloader firmware, currently the bootloader uses the internal FRC +PLL as the initial clock
source (16MHz FCY for PIC24F, 40 MHz FCY for PIC24H). Feel free to modify these config bits to
whatever you need.

For PIC24H devices, configuration bits are located in a special area of flash memory. For PIC24F
devices, a packed version of the configuration bits are located near the end of the last page of flash
memory, and at device reset time, these are unpacked into the configuration registers.

Configuration bits can also be specified in the application hex file that is downloaded by the bootloader.

Before version 0.19, the bootloader and associated firmware had the following behavior in terms of
configuration bits programming if the configuration bits were present in the hex file.

e PIC24H devices: configuration bits always programmed if present in the hex file.

e PIC24F devices: configuration bits were never programmed, the last page of flash memory for
PI1C24F devices was not programmed (1 page is 64 * 8 instructions = 512 instructions).

Beginning with Version 0.19, there is now a checkbox that allows control of configuration bit
programming if they exist in the application hex file. This checkbox setting is only used if the Version 2.0
or better of the firmware is loaded (the bootloader now checks the firmware version during programming,
and if it lower the Version 2.0, then the old behavior for configuration bit programming is used).

WithVersion 0.19 and later, if the configuration bit programming is enabled and configuration bits are
present in the application hex file, then the configuration bits are programmed for both PIC24H and
PIC24F devices. If configuration bit programming is disabled, then configuration bits are not
programmed for either PIC24H or PIC24F devices. For PIC24F devices, this has the nasty side effect of
not programming the last page of flash memory (the last 512 instructions of program memory), so make
sure that you do not have any program code there.

www.reesemicro.com has more documentation, and the source code.

The reason to disable configuration bit programming is that the bootloader may become inoperable if the
application has incorrect configuration bit settings (i.e. specify an external crystal as a clock source and
there is no crystal present).

I would recommend for PIC24H devices to set the bootloader configuration bits the way you want them
in the bootloader firmware by editing 24h_24f target/pic24_configbits.c , and then disable configuration
bit programming when downloading applications. This way, you cannot kill the bootloader via incorrect
configuration bits in the application.

For PIC24F devices, there is not a good solution. If you enable configuration bit programming, then you
may kill the bootloader if the application has incorrect configuration bits. If you disable configuration bit
programming, then the last page of flash memory is not useable as the bootloader aborts programming if
it detects program instructions (and not configuration bits) on the last page of flash memory. The choice is
up to you.

Comments

Send comments to Bob Reese (reese@ece.msstate.edu).
Version 0.32 May 2012:

Added support for PIC24E/dsPIC33E devices. This has only been tested with the PIC24EP64GP202
device but should work for many others (configuration bit programming has not been implemented for
these as | consider it dangerous to program configuration bits with a bootloader). For the
PIC24E/dsPIC33E the bootloader consumes another 1024 bytes of program memory because of the
coarser erase page size on these devices. This means the user’s IVT table starts at 0x1000 on these
devices instead at 0x0COQO for the other families. The default clock choice in the pic24_all.h file is
FRCPLL_FCY60MHz (PLL+FRC for a Fcy of 60Mhz). If you wish to use a crystal, the choice
PRIPLL_8MHzCrystal 40MHzFCY will work for these families.

Version 0.31 Jan 2011:
User-submitted bug fix for program code > 64K.
Version 0.3 (version bumped to match bootloader firmware of VV3.0) August 2010:

Both the firmware and application GLD files have been changed to remap the interrupt vector table such
that the bootloader space is never written during bootloading. Previously, memory page 0 was written
during the download process in order to copy the application’s interrupt vectors -- if this page write to
page O failed, then a 'dead bootloader' could result. This costs an extra 0x200 in program space usage, and
also a few cycles of extra latency in interrupt service. We had a few complaints of dead bootloaders, and
so made this switch. The GUI will detect if it is connected to a bootloader of firmware version less than
3.0 and will do the old behavior. Because the application and bootloader GLD files now require more
complex changes to them, a Python script that is now included

www.reesemicro.com has more documentation, and the source code.

(code/bootloader/24h_24f target/Ikr/convert_gld.py) that will produce all necessary bootloader linker
files (code/bootloader/24h_24f target/Ikr/*.gld) and application linker files (code/lkr/*.gld).

The python script is:
code/bootloader/24h_24f target/lkr/convert_gld.py
The script looks in the default root directories for the .gld files:

C:\Program Files (x86)\Microchip\MPLAB C30\support
C:\Program Files\Microchip\MPLAB C30\support

If the script cannot find one of these two directories, then the script aborts and prints an error
message -- if you have installed C30 in a different directory, then edit the setting of the
'C30_homedir' variable in the script.

Otherwise, just open a command window, change to the code/bootloader/24h_24f target/Ikr/
directory, and execute:

python convert_gld.py

It will convert all PIC24, PIC24F linker files that it finds. Bootloader linker files are placed in
this directory, while the application linker files are placed in code/lkr.

Version 0.24, Sept 2009

Changes to both firmware and GUI to support the PIC24FK family (has only been tested on the
PIC24F16KA102).

Version 0.23, Sept 2009

Minor change to support dsPIC33 family.
Version 0.21-22 Summer 2009

Minor changes to support higher baud rates
Version 0.20, Nov 23 2008

Fixed a problem in the configuration bit programming - configuration bits were still being programmed
even if the check box for disabling this was checked. A side effect was that configuration bits could be
corrupted in this case. Also, verification was fixed - it was indicating a match even if the program
contents did not match.

Version 0.19, October 9 2008

www.reesemicro.com has more documentation, and the source code.

Added support for enabling/disabling configuration bit programming, see the section titled “The
Bootloader and Configuration bits”. The changes affected both the GUI and the firmware. Also, the
COM port, baud rate, and other settings are now saved on exit in the local applications folder, and
restored when restarted.

Version 0.18, October 7 2008

Fixed a problem with the configuration bits sometimes getting corrupted by the verification process.

Version 0.17, September 3 2008

GUI changes: Added verification of program memory after programming, and a check box for enabling
logging (the log file is named bullyBootloaderLog.txt is in the same directory as the bootloader
executable).

Version 0.16, Aug 19 2008

Firmware now sets the POR bit if a program is loaded, this way a new program thinks that a POR has
occurred and the C runtime initializes persistent variables. Also, added a the RTS#(MCLR#) check box
and the "RTS# and Prgrm” button to the bootloader.

Version 0.15, Jul 13 2008

Added firmware support for Explorer16/100pin board (see

24h_24f target/Explorerl6_100p_bootloader.mcp). Fixed problem with bootloader GUI not detecting
location clash between user application and bootloader firmware - bootloader GUI will not load
application code if a clash exists).

Version 0.14, Jun 5 2008
If no serial ports exits, handle gracefully.
Version 0.13, May 27 2008

Added a 'small RAM' flag to devices.txt to flag devices with less < 2K RAM, such as the
PIC24HJ12GP202. They cannot hold an entire program memory page in SRAM at time, so programming
is done a half-page at a time. This also affected the firmware in the 24H_F_target directory.

www.reesemicro.com has more documentation, and the source code.

Version 0.12, May 26 2008

Added some fixes by He Wen Guang, with the main being to change the configuration space size for 24H
devices to include the User ID words. This affected the firmware in the 24H_F _target directory as well.

Version 0.11, May 23 2008

Added revision name to processor ID that is printed out, and restored process ID to the 'devices.txt' file.
Processor that connect is now checked for both correct device ID and process ID (upper byte of revision
number).

Initial Release

Version 0.10, May 19 2008

	PIC24 Bully Bootloader Documentation
	Installation of the Windows bootloader application
	Using the bootloader
	If the bootloader does not work
	Comments
	Initial Release

